函数f(x)=1/(1+e^1/x)在x=0处的极限是否存在?

函数f(x)=1/(1+e^1/x)在x=0处的极限是否存在?

题目
函数f(x)=1/(1+e^1/x)在x=0处的极限是否存在?
答案
x趋于0+
则1/x趋于正无穷
所以分母趋于正无穷
则f(x)趋于0
x趋于0-
则1/x趋于负无穷
所以e^(1/x)趋于0
所以分母趋于1
则f(x)趋于1
所以左右极限不相等
所以极限不存在
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.