解微分方程y^2+(x^2)(dy/dx)=xy(dy/dx)
题目
解微分方程y^2+(x^2)(dy/dx)=xy(dy/dx)
各路好汉小弟没财富了求帮帮忙,万谢!
答案
y^2=(xy-x^2)dy/dx
y^2/x^2=(y/x-1)dy/dx
y/x=u
dy=udx+xdu
u^2=(u-1)(u-xdu/dx)
u^2/(u-1)=u-xdu/dx
xdu/dx=u-u^2/(u-1)
xdu/dx=-u/(u-1)
du/[u/(u-1)]=-dx/x
u-lnu=-lnx+C
y/x-ln(y/x)=-lnx+C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点