证明::正交正定矩阵必为单位矩阵!

证明::正交正定矩阵必为单位矩阵!

题目
证明::正交正定矩阵必为单位矩阵!
答案
由定义,正交正定矩阵a,a*a'=a'*a=E;
另外显然有a*E=E*a=E;
比较二式,由于ab=ba=E中如果a、b正定,对正定的a,有b唯一,(正定的b,有a唯一),
所以b=E,同理证得a=E;所以,a=b=a'=b’=E .
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.