如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,AP=AB=2,E在PD上,且PE=2ED,F是PC的中点, (1)证明:平面PBD⊥平面PAC;(2)求证:B

如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,AP=AB=2,E在PD上,且PE=2ED,F是PC的中点, (1)证明:平面PBD⊥平面PAC;(2)求证:B

题目
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,AP=AB=2,E在PD上,且PE=2ED,F是PC的中点,

(1)证明:平面PBD⊥平面PAC;
(2)求证:BF∥平面ACE;
(3)求三棱锥D-BCF的体积V.
答案
(Ⅰ)证明:连接BD,交AC于O,因为底面ABCD是菱形,所以AC⊥BD,又PA⊥平面ABCD,所以PA⊥BD,BD⊥面PAC,故平面PBD⊥平面PAC.(Ⅱ)证明:取PE的中点G,连BG,FG,由F是PC的中点,O是BD的中点,得BG∥OE,EG∥CE...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.