已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证:1)PC‖平面EBD 2)BC⊥平面PCD

已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证:1)PC‖平面EBD 2)BC⊥平面PCD

题目
已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证:1)PC‖平面EBD 2)BC⊥平面PCD
答案
自己画一个图
连AC BD 相交于O,连BE,DE,OE.
1)----显然在△ACP中,O、E分别为两条边AC,AP的中点,所以OE‖PC,OE为平面BDE中的一条直线,所以PC‖平面EBD
2)---因为PD垂直平面ABCD,所以PD⊥AD,又四边形ABCD为正方形,所以AD⊥DC,所以AD⊥平面PCD,又BC‖AD,所以BC垂直平面PCD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.