极限 lim(n→∞)[(n!)^2/(2n)!]=

极限 lim(n→∞)[(n!)^2/(2n)!]=

题目
极限 lim(n→∞)[(n!)^2/(2n)!]=
答案
设a[n]=(n!)^2/(2n)!=n!/((n+1)(n+2)...(2n)),
因为a[n+1]/a[n]=(n+1)/(4x+2)0,所以a[n]有极限,设为A,
所以a[n+1]=a[n]*(n+1)/(2(2n+1))=a[n]*(1+1/n)/(4+2/n)
令n→∞得
A=A*1/4
A=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.