设A是N阶矩阵,且满足A的平方=E,证明r(A-E)+r(A+E)=n

设A是N阶矩阵,且满足A的平方=E,证明r(A-E)+r(A+E)=n

题目
设A是N阶矩阵,且满足A的平方=E,证明r(A-E)+r(A+E)=n
答案
因为A2=E,并且A的N阶距阵,所以(A-E)*(A+E)=0,A,E同为N阶
r(A+E)+r(A-E)=r(A+E+A-E)=r(2A)=n
又大于等于,又小于等于.可得只等于.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.