函数f(x)=cos^2x+4sinx+3的最大值是

函数f(x)=cos^2x+4sinx+3的最大值是

题目
函数f(x)=cos^2x+4sinx+3的最大值是
答案
y=cos²x+4sinx+4
=1-sin²x+4sinx+4
=-(sin²x-4sinx+4)+1+4
=-(sinx-2)²+5
因:-1≤sinx≤1 所以可得:
当sinx=1时有最大值为:6
当sinx=-1时有最小值为:4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.