已知:1^2+2^2+3^2+…n^2=1/6n(n+1)(2n+1),求2^2+4^2+6^2+8^2+…+50^2的值

已知:1^2+2^2+3^2+…n^2=1/6n(n+1)(2n+1),求2^2+4^2+6^2+8^2+…+50^2的值

题目
已知:1^2+2^2+3^2+…n^2=1/6n(n+1)(2n+1),求2^2+4^2+6^2+8^2+…+50^2的值
答案
1^2+2^2+…+n^2=1/6n(n+1)(2n+1),
则:
2^2+4^2+…+50^2
=2^2(1^2+2^2+……+25^2)
=22100
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.