三角形几何证明题

三角形几何证明题

题目
三角形几何证明题
锐角三角ABC中,AB=4√2,∠BAC=45°,∠BAC的平分线交BC于点D.M、N分别是AD和AB上的动点,求MN+BM的最小值
答案
作N关于AD的对称点N',连BN',MN'
所以MN'=MN
在△BMN'中,MN+BM=MN'+BM>BN'
所以当BN'⊥AC时,MN+BM有最小值,
在直角三角形ABN'中,AB=4√2,∠BAC=45°,
所以BN'=4,
即MN+BM的最小值为4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.