设A为n阶方阵,α1,α2,...,αn为线性无关的n个n维列向量.证明:R(A)=n﹤=﹥ Aα1,Aα2,...,Aαn线性无关

设A为n阶方阵,α1,α2,...,αn为线性无关的n个n维列向量.证明:R(A)=n﹤=﹥ Aα1,Aα2,...,Aαn线性无关

题目
设A为n阶方阵,α1,α2,...,αn为线性无关的n个n维列向量.证明:R(A)=n﹤=﹥ Aα1,Aα2,...,Aαn线性无关
【向量的秩】
答案
因为 (Aα1,Aα2,...,Aαn) = A(α1,α2,...,αn)当A可逆时,r(Aα1,Aα2,...,Aαn) = r(α1,α2,...,αn) = n.所以 Aα1,Aα2,...,Aαn线性无关.反之,Aα1,Aα2,...,Aαn线性无关时所以 (Aα1,Aα2,...,Aαn) 可逆所...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.