求 ∫ [(x^3)/(x^2-1)^(1/2)]dx,
题目
求 ∫ [(x^3)/(x^2-1)^(1/2)]dx,
答案
设u=(x^2-1)^(1/2),则
x^2=u^2+1
dx^2=d(u^2+1)=2udu
∫[(x^3)/(x^2-1)^(1/2)]dx=∫[(x^2)/[2(x^2-1)^(1/2)]]dx^2
=∫[(u^2+1)/(2u)]*2udu
=∫(u^2+1)du
=u^3/3+u
=u(u^2+3)/3
=(x^2-1)^(1/2)(x^2+2)/3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点