求和1/1·3+1/3·5+1/5·7+...+1/(2n+1)(2n-1)

求和1/1·3+1/3·5+1/5·7+...+1/(2n+1)(2n-1)

题目
求和1/1·3+1/3·5+1/5·7+...+1/(2n+1)(2n-1)
答案
1/(2n+1)(2n-1)
=[(2n+1)-(2n-1)]/【2×(2n+1)(2n-1)】
=1/2×[(2n+1)-(2n-1)]/【(2n+1)(2n-1)】
=1/2×[1/(2n-1)-1/(2n+1)
所以1/1*3=1/2×(1-1/3)
1/3*5=1/2×(1/3-1/5)
.
所以原式=1/2×(1-1/3)+1/2*(1/3-1/5)+.+1/2×[1/(2n-1)-1/(2n+1)
=1/2*(1-1/3+1/3-1/5+1/5-1/7+.+1/(2n-1)-1/(2n+1))
=1/2*(1-1/(2n+1))
=1/2*2n/(2n+1)
=n/2n+1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.