高数微分方程问题

高数微分方程问题

题目
高数微分方程问题
求满足下列条件的特解
y'=y/x+sin(y/x),y|(x=1)=π/2
答案是:y=2xarctanx,求过程
答案
方程是齐次方程,令u=y/x,则y=ux,dy/dx=u+xdu/dx,方程化为:u+xdu/dx=u+sinu,xdu/dx=sinu,分离变量cscudu=dx/x,两边积分,lntan(u/2)=lnc+lnC,所以tan(u/2)=Cx,所以原方程的通解是tan(y/(2x))=Cx,或者y=2xarctan(Cx)....
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.