证明:如果存在不全为0的实数s,t,使得sa+tb=0,那么a与b是共线向量;如果a与b不共线,且sa+tb=0,那么s=t=o

证明:如果存在不全为0的实数s,t,使得sa+tb=0,那么a与b是共线向量;如果a与b不共线,且sa+tb=0,那么s=t=o

题目
证明:如果存在不全为0的实数s,t,使得sa+tb=0,那么a与b是共线向量;如果a与b不共线,且sa+tb=0,那么s=t=o
答案
sa+tb=0 = -s/t a= b ,令 -s/t =k 得到存在一个不为0的实数k,使得k a=b 那么a b共线 (向量共线的定义)x0d如果a与b不共线 那么一定不存在一个实数 使得 -s/t a= b 所以t=0 ,则sa+tb=0,得sa=0 因为a不是0,所以s=0,即s=t=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.