已知函数f(x)=3x/2x+3,数列{an}满足a1=1,an+1=f(an),n∈N*
题目
已知函数f(x)=3x/2x+3,数列{an}满足a1=1,an+1=f(an),n∈N*
证明数列(1/an)为等差数列
答案
a(n+1)=f(an)=3an/(2an+3)
1/a(n+1)=(2an+3)/(3an)=2/3+1/an
1/a(n+1)-1/an=2/3
故数列{1/an}为等差数列.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点