向量a,向量b是两个不共线的非零向量,且|a|=|b|=1,且向量a与向量b夹角为120°.

向量a,向量b是两个不共线的非零向量,且|a|=|b|=1,且向量a与向量b夹角为120°.

题目
向量a,向量b是两个不共线的非零向量,且|a|=|b|=1,且向量a与向量b夹角为120°.
(1)记向量OA=向量a,向量OB=t向量b,向量OC=1/3(向量a+向量b),当实数t为何值时,∠ACB为钝角?
(2)令f(x)=|向量a-向量bsinx|,x属于[0,2π],求f(x)的值域及单调递减区间.
答案
(1)向量CA=OA-OC=a-(1/3)(a+b)=(2/3)a-(1/3)b,
CB=OB-OC=tb-(1/3)(a+b)=(-1/3)a+(t-1/3)b,
ab=-1/2,
∴向量CA*CB=(-2/9)a^2+(2t/3-1/9)ab+(1/9-t/3)b^2
=-2/9+1/18-t/3+1/9-t/3
=-2t/3-1/18-1/12时∠ACB为钝角.
(2)f(x)=|a-bsinx|,
[f(x)]^2=a^2-2absinx+b^2(sinx)^2=1+sinx+(sinx)^2=(sinx+1/2)^2+3/4,x∈[0,2π],
∴[f(x)]^2的值域是[3/4,3],
∴f(x)的值域是[√3/2,√3].
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.