已知空间四边形ABCD中,AC=AD,BC=BD,且E是CD的中点,F是BD的中点, (1)求证:BC∥平面AFE; (2)平面ABE⊥平面ACD.

已知空间四边形ABCD中,AC=AD,BC=BD,且E是CD的中点,F是BD的中点, (1)求证:BC∥平面AFE; (2)平面ABE⊥平面ACD.

题目
已知空间四边形ABCD中,AC=AD,BC=BD,且E是CD的中点,F是BD的中点,

(1)求证:BC∥平面AFE;
(2)平面ABE⊥平面ACD.
答案
证明:(1)∵E,F分别是CD与BD的中点
∴FE∥BC
∵EF⊂平面AFE,BC⊄平面AFE
∴BC∥平面AFE.(6分)
(2)∵AC=AD,BC=BD,且E是CD的中点,F是BD的中点
∴AE⊥DC,BE⊥CD
∵EB∩EA=E
∴CD⊥平面AEB
∵CD⊂平面ACD
∴平面ABE⊥平面ACD.(12分)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.