已知抛物线C1:y1=1/2x2-x+1,点F(1,1). (I)求抛物线C1的顶点坐标; (II)①若抛物线C1与y轴的交点为A,连接AF,并延长交抛物线C1于点B,求证:1/AF+1/BF=2.
题目
已知抛物线C
答案
(I)∵y
1=
x
2-x+1=
(x-1)
2+
,
∴抛物线C
1的顶点坐标为(1,
);
(II)①证明:根据题意得:点A(0,1),
∵F(1,1),
∴AB∥x轴,得AF=BF=1,
∴
+
=2;
②
+
=2成立.
理由:
如图,过点P(x
p,y
p)作PM⊥AB于点M,
则FM=1-x
p,PM=1-y
p,(0<x
p<1),
∴Rt△PMF中,由勾股定理,
得PF
2=FM
2+PM
2=(1-x
p)
2+(1-y
p)
2,
又点P(x
p,y
p)在抛物线C
1上,
得y
p=
(x
p-1)
2+
,即(x
p-1)
2=2y
p-1,
∴PF
2=2y
p-1+(1-y
p)
2=y
p2,
即PF=y
p,
过点Q(x
Q,y
Q)作QN⊥AB,与AB的延长线交于点N,
同理可得:QF=y
Q,
∵∠PMF=∠QNF=90°,∠MFP=∠NFQ,
∴△PMF∽△QNF,
∴
=,
这里PM=1-y
p=1-PF,QN=y
Q-1=QF-1,
∴
=,
即
+=2;
(III)令y
3=x,
设其图象与抛物线C
2交点的横坐标为x
0,x
0′,且x
0<x
0′,
∵抛物线C
2可以看作是抛物线y=
x
2左右平移得到的,
观察图象,随着抛物线C
2向右不断平移,x
0,x
0′的值不断增大,
∴当满足2<x≤m,y
2≤x恒成立时,m的最大值在x
0′处取得.
可得:当x
0=2时,所对应的x
0′即为m的最大值.
于是,将x
0=2代入
(x-h)
2=x,
有
(2-h)
2=2,
解得:h=4或h=0(舍去),
∴y
2=
(x-4)
2.
此时,由y
2=y
3,得
(x-4)
2=x,
解得:x
0=2,x
0′=8,
∴m的最大值为8.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 已知函数f(x)=1/3a^2x^3-ax^2+2/3,g(x)=-ax+1,x属于R,a不等于0
- 过度扩大棉花种植面积对环境的影响
- 如图所示,质量为m的小球用细线拴住放在光滑斜面上,斜面足够长,倾角为α的斜面体置于光滑水平面上,用水平力F推斜面体使斜面体缓慢地向左移动,小球沿斜面缓慢升高.当线拉力最小
- 一个物体重2N,浸没在水中称重时,弹簧测力计的示数为1.75N,浸没在某种液体中称重时,弹簧测力计的示数
- 1 当二氧化硫和三氧化硫中所含氧元素的质量比为5:6时,他的质量比为多少?
- f(x)=(2tanx/2)/(1-tan^2 x/2)
- 观察下列各式,直接写出答案
- she swimming is her the pool friend at with连词成句
- 一个最简分数,把它的分子缩小5倍,分母扩大2倍后可以化简成2分之1,这个最简分数是多少?
- 400k时,1mol理想气体由10的5次密pa定温可逆压缩至106次密pa,求该过程的W、△H、△S、△G、△U
热门考点
- 一只狼吃饱了,
- 正多边形边数3,4,5,6,每个内角的度数60°,90°,108°,120°,求第n个正多边形内角的度数
- 某种产品的成本是120元/件,试销阶段每件产品的售价x(元)与产品的日销售量y(件)之间关系如下表所示:
- 当x∈(0,1)时,不等式1/x+4/1-x>m,m最大值为
- she read a book about american histoey_rgk后三个词提问___________________________
- 成语“千锤百炼”的意思?并造一个句子
- 一个长方体的棱长和是42厘米,从一个顶点出发的三条棱的和是_厘米.
- 按规律填数2、10、4、11、6、14、8、19( )、( )、
- 已知2y-x/7x+5y=2/3且y≠0,求x/y的值
- “接下来,我为大家带来一段绕口令”用英语怎么说?