设f1(x)=2/1+x,定义fn+1(x)=f1[fn(x)],an=fn(0)−1fn(0)+2,其中n∈N*,则数列{an}的通项_.

设f1(x)=2/1+x,定义fn+1(x)=f1[fn(x)],an=fn(0)−1fn(0)+2,其中n∈N*,则数列{an}的通项_.

题目
f
答案
(1)∵f1(0)=2,a1=2−12+2=14,fn+1(0)=f1[fn(0)]=21+fn(0),∴an+1=fn+1(0)−1fn+1(0)+2=21+fn(0)−121+fn(0)+2=1−fn(0)4+2fn(0)=-12•fn(0)−1fn(0)+2=-12an,∴q=an+1an=-12,∴数列{an}是首项为14,公...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.