在直角梯形ABCD中,AB平行于CD,AD垂直于DC,AB=BC,且AE垂直于BC,求证:AD=AE

在直角梯形ABCD中,AB平行于CD,AD垂直于DC,AB=BC,且AE垂直于BC,求证:AD=AE

题目
在直角梯形ABCD中,AB平行于CD,AD垂直于DC,AB=BC,且AE垂直于BC,求证:AD=AE
以AB边上一点O为圆心,过A,E两点作圆O,再判断直线AD与圆O的位置关系,并说明理由
答案
证明:连接AC.
∵AB=BC,∴∠BAC=∠BCA,
∵AB∥CD,∴∠BAC=∠DCA,
∴∠DCA=∠BCA,
又∠D=∠AEC=90°,AC=AC,
∴△ACD≅△ACE,
∴AD=AE
  
∵AD⊥DC,AB∥CD,
∴AD⊥AB,
∴直线AD与圆O相切
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.