已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.
题目
已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.
答案
证明:先证必要性:∵a+b=1,∴b=1-a∴a3+b3+ab-a2-b2=a3+(1-a)3+a(1-a)-a2-(1-a)2=a3+1-3a+3a2-a3+a-a2-a2-1+2a-a2=0再证充分性:∵a3+b3+ab-a2-b2=0∴(a+b)(a2-ab+b2)-(a2-ab+b2)=0即:(a2-ab+b2)(...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点