离散数学的对称性和反对称的例子

离散数学的对称性和反对称的例子

题目
离散数学的对称性和反对称的例子
能不能举出同时具有自反性和反自反性的例子,离散数学的
答案
  关系R,是建立在两个集合A、B的笛卡尔积上的;而我们总可以将两个不同集合(A、B)上的关系转化为同一个集合X(即两个相等的集合)上的关系——只需取X=A∪B即可.而自反性,就是以这个集合X中的元素为判断依据的.
  自反性,要求X中的每个元素都……;
  反自反性,则要求X中的每个元素都不……;
所以,只要X中有元素,以上两点就不可能同时成立;当然,如果X=空集,那么以上两点就可以都成立了.而空集上的关系只有一个——空关系.所以,同时具有自反性和反自反性的关系,有且只有一个:空集上的空关系.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.