用数学归纳法证明:13+23+33+……+n3=[n(n+1)/2]平方
题目
用数学归纳法证明:13+23+33+……+n3=[n(n+1)/2]平方
第二个3是3次方
答案
证明:1)当n=1时,1³=1,[1×(1+1)/2]²=1
成立
2)假设n=k时成立,即1³+2³+3³+.+k³=[k(k+1)/2]²
3)n=k+1时,1³+2³+3³+...+k³+(k+1)³=[k(k+1)/2]²+(k+1)³=(k+1)²[k²/4+(k+1)]
=(k+1)²(k²+4k+4)/4=(k+1)²(k+2)²/4=[(k+1)(k+2)/2]²
即n=k+1时,成立
∴n为一切正整数成立
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点