试确定a和b,使x4+ax2-bx+2能被x2+3x+2整除.

试确定a和b,使x4+ax2-bx+2能被x2+3x+2整除.

题目
试确定a和b,使x4+ax2-bx+2能被x2+3x+2整除.
答案
由于x2+3x+2=(x+1)(x+2),
假如f(x)能被x2+3x+2整除,则(x+1)和(x+2)必是f(x)的因式,
因此,当x=-1时,f(-1)=0,即1+a+b+2=0,①
当x=-2时,f(-2)=0,即16+4a+2b+2=0,②
由①,②联立,则有
1+a+b+2=0
16+4a+2b+2=0

解得
a=−6
b=3
首先把x2+3x+2因式分解,利用整除的性质可知x2+3x+2每一个因式可整除x4+ax2-bx+2,每一个因式为0的x的值,同样使x4+ax2-bx+2为0,由此联立方程解答即可.

数的整除性.

此题主要利用整除的性质建立二元一次方程组解答问题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.