高数证明单调性

高数证明单调性

题目
高数证明单调性
设函数f(x)在区间[a,b]上连续,在(a,b)内f''(x)>0,证明:
φ(x)=[f(x)-f(a)]/(x-a)在(a,b)内单调增
答案
φ'(x)=[(x-a)f'(x)-(f(x)-f(a))]/(x-a)^2,由Lagrange中值定理,存在ξ∈(a,x),使得f(x)-f(a)=f'(ξ)(x-a),所以
φ'(x)=[(x-a)f'(x)-f'(ξ)(x-a)]/(x-a)^2=[f'(x)-f'(ξ)]/(x-a)
因为在(a,b)内f''(x)>0,所以f'(x)在(a,b)内单调增加,所以f'(x)-f'(ξ)>0.
所以在(a,b)内φ'(x)>0,所以φ(x)=[f(x)-f(a)]/(x-a)在(a,b)内单调增
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.