请证明:在三角形ABC中,有tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1
题目
请证明:在三角形ABC中,有tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1
答案
tan(B/2)tan(C/2)+tan(C/2)tan(A/2) =tan(C/2)[tan(A/2)+tan(B/2)] =tan[90-(A+B)/2]*[tan(A/2)+tan(B/2)] =cot[(A+B)/2]*[tan(A/2)+tan(B/2)] =[tan(A/2)+tan(B/2)]/tan(A/2+B/2) =1-tan(A/2)tan(B/2)(两角和公式...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点