由3个不为零的数字组成的三位数,将它各位上的数字重新排序后,得到一个新的三位数.新三位数和原三位数的和能否等于999?若能,请写出满足题意的原三位数和新三位数;若不能,请说

由3个不为零的数字组成的三位数,将它各位上的数字重新排序后,得到一个新的三位数.新三位数和原三位数的和能否等于999?若能,请写出满足题意的原三位数和新三位数;若不能,请说

题目
由3个不为零的数字组成的三位数,将它各位上的数字重新排序后,得到一个新的三位数.新三位数和原三位数的和能否等于999?若能,请写出满足题意的原三位数和新三位数;若不能,请说明理由.
答案
设原数ABC的值为100A+10B+C,新数的值为100A+10B+C+9T
则要使:
100A+10B+C+100A+10B+C+9T
=2(100A+10B+C)+9T=999=9×111 成立,
必须有2(100A+10B+C)能被9整除,有100A+10B+C能被9整除.
根据被9整除的数的性质,有A+B+C能被9整除.
设原三位数的各位数字之和A+B+C=S,打乱排序后得到的新三位数数字和不变,仍为S.
则:
1、这两个三位数相加时不发生进位,和的各位数字和=2S 为偶数必≠27
2、这两个三位数相加时发生1次进位,和的各位数字和=2S-9=27,则S=18.
而当S≥15时,无论如何安排A、B、C,必至少发生两次进位.
3、发生2次进位,2S-18为偶数,必≠27
4、发生3次进位,和的各位数字和=2S-27=27,则S=27、能被9整除,
但此时仅有A=B=C=9才能成立.
显然即使满足发生3次进位的情况,仍不能使三位数的和等于999,而只能等于1998.
综上可知,不可能存在这样的三位数,使得原数和打乱后的数相加的和等于999.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.