勾谷定理是怎么证明的?
题目
勾谷定理是怎么证明的?
勾谷定理:两直角边长度的平方的和等于斜边长度的平方.
答案
由于百度上面不能传图片请下面是文字无图
勾股定理是数学中最重要的定理之一.也许在数学中还找不到这样一个定理,其证明方法之多能够超过勾股定理.它有四百多种证明!卢米斯(Loomis)在他的《毕达哥拉斯定理》一书的第二版中,收集了这个定理的37O种证明并对它们进行了分类.
勾股的发现
关于这个定理,虽然号称毕达哥拉斯定理,但人们在遗留下来的古希腊手稿或译文中并没有找到毕达哥拉斯本人及其学派的有关证明,所以人们只能对他可能用的方法进行一些揣测.有据可查的最早证明见于欧几里得的《几何原本》(公元前3世纪)之中.欧几里得用几何的方法,作出了一个巧妙的证明,有兴趣的读者不妨查阅一下.
中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:
4×(ab/2)+(b-a)2=c2
化简后便可得:
a2+b2=c2
亦即:
c=(a2+b2)(1/2)
赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范.以后的数学家大多继承了这一风格并且有所发展.
印度的数学家兼天文学家婆什迦罗,也给出了与赵爽相同的几何图形.但是婆什迦罗在画出这个图形之后,并没有进一步解释和证明,只是说:“正好!”婆什迦罗还给出了这个定理的另外一个证明,即画出斜边上的高,由图中给出的两个相似三角形,我们有
c/b=b/m和c/a=a/n
即
cm=b2和cn=a2
相加便得:
a 2 +b2=c(m+n)=c2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 如图所示,AB//ED,∠B=48°,∠D=42°,BC垂直于CD吗?
- 回首昨天,应该是问心无愧;面对今天,应该是倍加珍惜的:展望明天,应该是信心百倍的
- 小孔成像和影子有什么区别
- 1.—Will you go on a school trip this weekend?
- 写出8组关于读书的对联诗句或名言警句
- 《朝花夕拾》.《钢铁是怎样炼成的》的读书笔记
- 4-3.25/1.3*0.7用简便方法计算
- 金属的硬度比塑料大对吗
- 一架飞机在空中以300m/s的速率水平匀速飞行,而一只质量为0.3kg的小鸟以4m/s的速率相向飞来,不幸相撞
- 碳和氧合成的有臭味的气体,并且可以和氧气发生反应的物质量的比为1:2,那么它是个什么东东?