正方形ABCD中,P为对角线AC上的任意一点,PE⊥AD于点E,PF⊥CD于F,连接EF和BP,判断BP和EF的位置关系证明

正方形ABCD中,P为对角线AC上的任意一点,PE⊥AD于点E,PF⊥CD于F,连接EF和BP,判断BP和EF的位置关系证明

题目
正方形ABCD中,P为对角线AC上的任意一点,PE⊥AD于点E,PF⊥CD于F,连接EF和BP,判断BP和EF的位置关系证明
答案
证明:
连接PD,延长BP,交EF于点G
∵四边形ABCD是正方形
∴AB=AD,∠BAP=∠DAP
∵AP=AP
∴△ABP≌△ADP
∴PB=PD,∠ABP=∠ADP
∵四边形PFDE是矩形
∴PB=PD
易得∠ADP=∠EFP
∵PF∥AB
∴∠ABP=∠EPG
∴∠EPG=∠PFG
∵∠EPG+∠FPG=90°
∴∠PFG+∠FPG=90°
∴∠PGF=90°
即BG⊥EF
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.