关于逆矩阵的证明题
题目
关于逆矩阵的证明题
设A和B分别是m*n和n*m矩阵,若AB=E(m),BA=E(n),求证m=n且B=A^(-1) (E(m)为m阶的单位矩阵,E(n)为n阶的单位矩阵,A^(-1)为A的逆矩阵)
答案
楼上证明不对.
证明:
(1)在矩阵乘法中,乘积的秩r(AB)=n,若m≠n,则不失一般性,可设m
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点