设数列{an}满足下列关系式a1=2a (a是不为0的常数)an =2a - a^2 / an-1 数列bn=1/(an-a)

设数列{an}满足下列关系式a1=2a (a是不为0的常数)an =2a - a^2 / an-1 数列bn=1/(an-a)

题目
设数列{an}满足下列关系式a1=2a (a是不为0的常数)an =2a - a^2 / an-1 数列bn=1/(an-a)
证明{bn}为等差数列
答案
(1)
b1=1/(a1-a)=1/a
bn-bn-1=1/(an-a)-1/(an-1-a) (把an=2a-a*a/an-1带入并化简)
=1/a (n》2)
所以 bn是等差数列
(2)
bn = n/a
bn=1/an-a
所以 an=(n+1)n/a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.