abc=1,求,ab+a+1分之a+bc+b+1分之b+ac+c+1分之c的值
题目
abc=1,求,ab+a+1分之a+bc+b+1分之b+ac+c+1分之c的值
答案
1=abc
a/(ab+a+1) + b/(bc+b+1) + c/(ac+c+1)
= a/(ab+a+abc) + b/(bc+b+1) + c/(ac+c+1)
= 1/(b+1+bc) + b/(bc+b+1) + c/(ac+c+1)
= 1/(bc+b+1) + b/(bc+b+1) + c/(ac+c+1)
= (1+b)/(bc+b+1) + c/(ac+c+1)
= (abc+b)/(bc+b+abc) + c/(ac+c+1)
= (ac+1)/(c+1+ac) + c/(ac+c+1)
= (ac+1)/(ac+c+1) + c/(ac+c+1)
= (ac+1+c)/(ac+c+1)
= 1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点