证明存在无穷多个整数x,使得x^5+(x+1)^4为合数

证明存在无穷多个整数x,使得x^5+(x+1)^4为合数

题目
证明存在无穷多个整数x,使得x^5+(x+1)^4为合数
答案
取x+1 = y^5,
则x^5 + (x+1)^4 = x^5 + (y^4)^5 = (x + y^4)(x^4 - x^3 * y^4 + ...+ y^16)为合数,
而y可以任取,所以有无穷多个x
(注意a^5 + b^5可以因式分解)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.