设O为坐标原点,OA=(2,5),OB=(3,1),OC=(6,3)在直线OC上存在点M,使MA*MB取得最小值
题目
设O为坐标原点,OA=(2,5),OB=(3,1),OC=(6,3)在直线OC上存在点M,使MA*MB取得最小值
答案
OC所在直线的方程是
x-2y=0
点M (x,y)在OC上,那么M(x,y)满足 x-2y=0
MA²=(x-2)²+(y-5)²
MB²=(x-3)²+(y-1)²
因为
MA*MB)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点