设f(x,y)在(x0,y0)处的两个一阶偏导数存在,为什么x->x0时的limf(x,y0)=f(x0,y0)

设f(x,y)在(x0,y0)处的两个一阶偏导数存在,为什么x->x0时的limf(x,y0)=f(x0,y0)

题目
设f(x,y)在(x0,y0)处的两个一阶偏导数存在,为什么x->x0时的limf(x,y0)=f(x0,y0)
有证明过程最好,或者说明一下用到了什么定理之类的.谢了
答案
y=y0 不变,则 f(x,y0)是一元函数,一元函数导数存在必连续,
limf(x,y0)=f(x0,y0).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.