计算I=∫∫4xzdydz-2yzdzdx+(1-z^2)dxdy,其中积分区域∑是由平面曲线{z=e^y;x=0 ,0≤y≤a 绕z轴旋转一周所得旋转面的下侧.
题目
计算I=∫∫4xzdydz-2yzdzdx+(1-z^2)dxdy,其中积分区域∑是由平面曲线{z=e^y;x=0 ,0≤y≤a 绕z轴旋转一周所得旋转面的下侧.
I=πa^2(e^(2a)-1)-πae^(2a)+(π/2)e^(2a)-(π/2)
我解出来的答案为πa^2(e^(2a)-1)
答案
你是对的,我算出来也是这结果
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点