过抛物线C:x方=4y的焦点做斜率为一的直线交C于A,B两点,M是x轴上的动点,则向量MA乘以向量MB的最小值为

过抛物线C:x方=4y的焦点做斜率为一的直线交C于A,B两点,M是x轴上的动点,则向量MA乘以向量MB的最小值为

题目
过抛物线C:x方=4y的焦点做斜率为一的直线交C于A,B两点,M是x轴上的动点,则向量MA乘以向量MB的最小值为
答案
由题意得,焦点P(0,1)
得直线方程:y=x+1
联立方程:y=x+1 ,x^2=4y
得A(2+√8,3+√8),B(2-√8,3-√8)
M(x,0)
向量MA(2+√8-x,3+√8),MB(2-√8-x,3-√8)
MA点乘MB =x^2-4x-3=(x-2)^2 - 7
得起最小值 -7
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.