如何证明:1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6

如何证明:1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6

题目
如何证明:1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6
我是文科的,别用理科知识答
答案
只需要知道2个初中公式就可以,这本来就是数学,不可能用历史或者地理的角度解答...
a^3-b^3=(a-b)(a^2+ab+b^2) 和1+2+...+n=n(n+1)/2
根据立方差公式得
n^3-(n-1)^3==3n^2-3n+1
(n-1)^3-(n-2)^3=3(n-1)^2-3(n-1)+1
.
.
2^3-1^3=3*2^2-3*2+1
1^3-0^3=3*1^2-3*1+1以上左右两端分别相加得
n^3=3[1^2+2^2+.n^2]-3[1+2+...n]+n
所以3[1^2+2^2+...n^2]=n^3+3[n(n+1)/2]-n=[2n^3+(3n^2+3n)-2n]/2
=(2n^3+3n^2+n)/2=n(n+1)(2n+1)/2
所以1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6
用类似的方法可以求更高次幂的和.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.