证明 Σcos((k/n)π)=0;k=0,1,2,...2n-1

证明 Σcos((k/n)π)=0;k=0,1,2,...2n-1

题目
证明 Σcos((k/n)π)=0;k=0,1,2,...2n-1
答案
这个问题即求复数 ∑e^(kπi/n),k=0,1,2,…,2n-1的实部
∑e^(kπi/n),k=0,1,2,…,2n-1
= e^(kπi)/n *[ 1 - e^(2πi) ] / [ 1 - e^(πi/n) ]
e^(2πi) = cos2π+i*sin2π = 1
所以上式为0
故原式=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.