在等腰梯形ABCD中,对角线AC,BD相互垂直,该梯形的高与中位线有怎样的大小关系?为什

在等腰梯形ABCD中,对角线AC,BD相互垂直,该梯形的高与中位线有怎样的大小关系?为什

题目
在等腰梯形ABCD中,对角线AC,BD相互垂直,该梯形的高与中位线有怎样的大小关系?为什
答案
过点D作DE‖AC,交BC的延长线于点E.
∵AC⊥BD,DE‖AC
∴BD⊥DE
∵梯形ABCD是等腰梯形,
∴AC=BD
在⊿BDE中,BD⊥DE,DE=AC=BD
∴BE=√2BD
梯形的中位线长就等于等腰直角三角形BDE的中位线长,是1/2BE=√2/2BD
∵⊿BDE是等腰直角三角形,
∴BE边上的高是1/2BE=√2/2BD
由此可知:这个梯形的高等于它的中位线长.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.