如何证明均值定理?

如何证明均值定理?

题目
如何证明均值定理?
均值定理:
已知x,y∈R+,x+y=S,x·y=P
(1)如果P是定值,那么当且仅当x=y时,S有最小值;
(2)如果S是定值,那么当且仅当x=y时,P有最大值.

当a、b∈R+,a+b=k(定值)时,ab≤((a+b)/2)2=k2/4 (定值)当且仅当a=b时取等号
当a、b、c∈R+,a + b + c = k(定值)时,abc≤((a+b+c)/3)3=k3/27 (定值) 当且仅当a=b=c时取等号.
上面这个定理怎么证明?谁能给出证明过程?
答案
(1)如果P是定值,那么当且仅当x=y时,S有最小值;
S(x)=x+P/x (x>0)
由一阶导S'(x)=1-P/x^2=0得:x^2=P
此时一阶导S''(x)=-P/x^3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.