高数.

高数.

题目
高数.
若函数f(x)在点X=0处连续,且其极限f(x)/x存在,试问函数f(x)在点X=0处是否可导
答案
这个题有点学问的.
应该是可导的.
证明:
(1)首先f(x)在点X=0处连续,连续是可导的必要条件,因此我们可以继续往下讨论.
(2)题目告诉我们lim{x-->0} f(x)/x存在.但是没有告诉我们f(0)是多少.如果诉我们f(0)=0的话,那就是lim{x-->0} [f(x)-f(0)]/[x-0]存在,这就是x=0点导数的定义,我们便能直接判断出f(x)在x=0可导.
(3)但是本题并未说“f(x)=0”,虽然没直接说f(0)=0,但我们可以从字里行间推出f(0)=0的!
理由就是“lim{x-->0} f(x)/x存在”
当x趋近于0的时候,分母x是一个无穷小量,整体分式的极限存在,说明分子f(x)也应该是无穷小量,(否则分式将趋于无穷大,即分式极限不存在)
这样就说明了f(0)必然为0!
接下来就顺理成章的:lim{x-->0} [f(x)-f(0)]/[x-0]存在,所以0点可导
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.