已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4. (1)求函数y=f(x)的表达式; (2)求函数y=f(x)的单调区间和极值.
题目
已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(1)求函数y=f(x)的表达式;
(2)求函数y=f(x)的单调区间和极值.
答案
(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b;则由题意可得,f′(1)=3+2a+b=0f′(−1)=3−2a+b=0f(−2)=−8+4a−2b+c=−4,解得,a=0,b=-3,c=-2,故f(x)=x3-3x-2,(2)由(1)知,f′(x)=3x2-3=3(x+...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点