已知△ABC的三边长都是有理数.(1)求证cosA是有理数;(2)求证:对任意正整数n,cosnA是有理数.

已知△ABC的三边长都是有理数.(1)求证cosA是有理数;(2)求证:对任意正整数n,cosnA是有理数.

题目
已知△ABC的三边长都是有理数.
(1)求证cosA是有理数;
(2)求证:对任意正整数n,cosnA是有理数.
答案
(1)证明:设三边长分别为a,b,c,cosA=
b2+c2-a2
2bc

∵a,b,c是有理数,b2+c2-a2是有理数,分母2bc为正有理数,又有理数集对于除法的具有封闭性,
b2+c2-a2
2bc
必为有理数,
∴cosA是有理数.
(2)①当n=1时,显然cosA是有理数;
当n=2时,∵cos2A=2cos2A-1,因为cosA是有理数,∴cos2A也是有理数;
②假设当n=k(k≥2)时,结论成立,即coskA、cos(k-1)A均是有理数.
当n=k+1时,cos(k+1)A=coskAcosA-sinkAsinA,cos(k+1)A=coskAcosA-
1
2
[cos(kA-A)-cos(kA+A)]
cos(k+1)A=coskAcosA-
1
2
cos(k-1)A+
1
2
cos(k+1)A

解得:cos(k+1)A=2coskAcosA-cos(k-1)A
∵cosA,coskA,cos(k-1)A均是有理数,∴2coskAcosA-cos(k-1)A是有理数,
∴cosA,coskA,cos(k-1)A均是有理数.
即当n=k+1时,结论成立.
综上所述,对于任意正整数n,cosnA是有理数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.