甲、乙两颗人造地球卫星,质量相同,它们的轨道都是圆,若甲的运行周期比乙大,则(  ) A.甲距地面的高度一定比乙大 B.甲的速度一定比乙大 C.甲的加速度一定比乙小 D.甲的动能一定

甲、乙两颗人造地球卫星,质量相同,它们的轨道都是圆,若甲的运行周期比乙大,则(  ) A.甲距地面的高度一定比乙大 B.甲的速度一定比乙大 C.甲的加速度一定比乙小 D.甲的动能一定

题目
甲、乙两颗人造地球卫星,质量相同,它们的轨道都是圆,若甲的运行周期比乙大,则(  )
A. 甲距地面的高度一定比乙大
B. 甲的速度一定比乙大
C. 甲的加速度一定比乙小
D. 甲的动能一定比乙小
答案
A、人造卫星受到地球的万有引力提供向心力G
Mm
r2
=m
4π2
T2
r
,得r=
3
GMT2
4π2
,由此可知,周期越大,轨道半径越大,因甲的运行周期比乙大,故甲距地面的高度一定比乙大,故A正确.
BD、根据万有引力提供向心力G
Mm
r2
=m
v2
r
,得v=
GM
r
,由此可知,轨道半径越大,速度越小,甲的轨道半径大于乙的轨道半径,故甲的速度比乙的速度小,即甲的动能一定比乙小,故B错误、D正确.
C、根据万有引力提供向心力G
Mm
r2
=ma
a=
GM
r2
,由此可知,轨道半径越大,加速度越小,甲的轨道半径大于乙的轨道半径,故甲的加速度比乙的加速度小,故C正确.
故选:ACD.
人造卫星受到地球的万有引力提供向心力,用周期表示向心力来判断半径的关系,然后判断加速度、速度大小关系,进而分析动能的关系.

人造卫星的加速度、周期和轨道的关系.

解答本题抓住卫星的万有引力提供向心力,由牛顿第二定律列出表达式,由二者的周期关系来判断半径、加速度、速度、动能等关系.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.