f(x)在x→无穷大时极限为A,f(x)在R上连续,求证f(x)有界
题目
f(x)在x→无穷大时极限为A,f(x)在R上连续,求证f(x)有界
limf(x)在x→无穷大时极限为A,且f(x)在R上连续,求证f(x)有界.
答案
对于ε=1,由lim(x→∞)f(x)=A,存在正数X,当|x|>X时,|f(x)-A|<1,所以|f(x)|<1+|A|.
f(x)在[-X,X]上连续,从而有界,所以存在正数M1,使得|f(x)|≤M1对任意的x∈[-X,X]恒成立.
取M=max{1+|A|,M1},则|f(x)|<M在R上恒成立,所以f(x)有界
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点