齐次方程组,系数矩阵的第一列全为0,如何得出基础解系?

齐次方程组,系数矩阵的第一列全为0,如何得出基础解系?

题目
齐次方程组,系数矩阵的第一列全为0,如何得出基础解系?
系数矩阵为
0 -1 1 1
0 1 0 0
0 0 1 0
0 0 0 1
求基础解系
答案
系数矩阵为
0 -1 1 1
0 1 0 0
0 0 1 0
0 0 0 1
行初等变换为
0 1 0 0
0 0 1 0
0 0 0 1
0 -1 1 1
行初等变换为
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
则基础解系为 (1, 0, 0, 0)^T,
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.