F是有单位元的交换环,若F的每个主理想都是素理想,求证F是域
题目
F是有单位元的交换环,若F的每个主理想都是素理想,求证F是域
哪怕只是提供个思路也好啦
答案
这个问题的叙述有点小问题,例如F本身是主理想,但他不是素理想.
首先由零理想是素理想可知F是整环,即没有零因子.任取非零元f,如果f不是可逆元,则主理想(f^2)是素理想,从而 f∈(f^2),故存在g使得 f=gf^2,由于没有零因子,所以可以两边约去f,得到 fg=1,矛盾.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点