3阶方正A满足|A+2E|=0,|A+E|=0,|A-E|=0,ZE,则下列矩阵可逆的是 A.A-2E,B.2A+E,C.A+2E,D.2A+3E.求详解

3阶方正A满足|A+2E|=0,|A+E|=0,|A-E|=0,ZE,则下列矩阵可逆的是 A.A-2E,B.2A+E,C.A+2E,D.2A+3E.求详解

题目
3阶方正A满足|A+2E|=0,|A+E|=0,|A-E|=0,ZE,则下列矩阵可逆的是 A.A-2E,B.2A+E,C.A+2E,D.2A+3E.求详解
不好意思,条件打错了。|A+2E|=0,|A+E|=0,|A-2E|=0。
答案
因为 |A+2E|=0,|A+E|=0,|A-E|=0,所以 A 的特征值为 -2,-1,1所以 A-2E 的特征值为 -4,-3,-1,故 A-2E 可逆2A+E 的特征值为 -3,-1,3,故 2A+E 可逆A+2E 的特征值为 0,1,3,故 A+2E 不可逆2A+3E 的特征值为 -1,1,5,故 2A+3...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.